研究方法
如今沒有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結(jié)論的問題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學(xué)對于航空工程一樣,人類生物學(xué)對于人工智能研究是沒有關(guān)系的?智能行為能否用簡單的原則(如邏輯或優(yōu)化)來描述?還是必須解決大量完全無關(guān)的問題?智能是否可以使用高級符號表達(dá),如詞和想法?還是需要“子符號”的處理?JOHN HAUGELAND提出了GOFAI(出色的老式人工智能)的概念,也提議人工智能應(yīng)歸類為SYNTHETIC INTELLIGENCE,[29]這個概念后來被某些非GOFAI研究者采納。
大腦模擬
主條目:控制論和計算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如W. GREY WALTER的TURTLES和JOHNS HOPKINS BEAST。 這些研究者還經(jīng)常在普林斯頓大學(xué)和英國的RATIO CLUB舉行技術(shù)協(xié)會會議.直到1960, 大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。
符號處理
主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學(xué), 斯坦福大學(xué)和麻省理工學(xué)院,而各自有獨立的研究風(fēng)格。JOHN HAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法在小型證明程序上模擬高級思考有很大的成就?;诳刂普摶蛏窠?jīng)網(wǎng)絡(luò)的方法則置于次要。 60~70年代的研究者確信符號方法最終可以成功創(chuàng)造強人工智能的機器,同時這也是他們的目標(biāo)。認(rèn)知模擬經(jīng)濟學(xué)家赫伯特·西蒙和艾倫·紐厄爾研究人類問題解決能力和嘗試將其形式化,同時他們?yōu)槿斯ぶ悄艿幕驹泶蛳禄A(chǔ),如認(rèn)知科學(xué), 運籌學(xué)和經(jīng)營科學(xué)。他們的研究團隊使用心理學(xué)實驗的結(jié)果開發(fā)模擬人類解決問題方法的程序。這方法一直在卡內(nèi)基梅隆大學(xué)沿襲下來,并在80年代于SOAR發(fā)展到高峰。基于邏輯不像艾倫·紐厄爾和赫伯特·西蒙,JOHN MCCARTHY認(rèn)為機器不需要模擬人類的思想,而應(yīng)嘗試找到抽象推理和解決問題的本質(zhì),不管人們是否使用同樣的算法。他在斯坦福大學(xué)的實驗室致力于使用形式化邏輯解決多種問題,包括知識表示, 智能規(guī)劃和機器學(xué)習(xí). 致力于邏輯方法的還有愛丁堡大學(xué),而促成歐洲的其他地方開發(fā)編程語言PROLOG和邏輯編程科學(xué).“反邏輯”斯坦福大學(xué)的研究者 (如馬文·閔斯基和西摩爾·派普特)發(fā)現(xiàn)要解決計算機視覺和自然語言處理的困難問題,需要專門的方案-他們主張不存在簡單和通用原理(如邏輯)能夠達(dá)到所有的智能行為。ROGER SCHANK 描述他們的“反邏輯”方法為 "SCRUFFY" .常識知識庫 (如DOUG LENAT的CYC)就是"SCRUFFY"AI的例子,因為他們必須人工一次編寫一個復(fù)雜的概念。基于知識大約在1970年出現(xiàn)大容量內(nèi)存計算機,研究者分別以三個方法開始把知識構(gòu)造成應(yīng)用軟件。這場“知識革命”促成專家系統(tǒng)的開發(fā)與計劃,這是第一個成功的人工智能軟件形式?!爸R革命”同時讓人們意識到許多簡單的人工智能軟件可能需要大量的知識。
子符號法
80年代符號人工智能停滯不前,很多人認(rèn)為符號系統(tǒng)永遠(yuǎn)不可能模仿人類所有的認(rèn)知過程,特別是感知,機器人,機器學(xué)習(xí)和模式識別。很多研究者開始關(guān)注子符號方法解決特定的人工智能問題。自下而上, 接口AGENT,嵌入環(huán)境(機器人),行為主義,新式AI機器人領(lǐng)域相關(guān)的研究者,如RODNEY BROOKS,否定符號人工智能而專注于機器人移動和求生等基本的工程問題。他們的工作再次關(guān)注早期控制論研究者的觀點,同時提出了在人工智能中使用控制理論。這與認(rèn)知科學(xué)領(lǐng)域中的表征感知論點是一致的:更高的智能需要個體的表征(如移動,感知和形象)。計算智能80年代中DAVID RUMELHART 等再次提出神經(jīng)網(wǎng)絡(luò)和聯(lián)結(jié)主義. 這和其他的子符號方法,如模糊控制和進(jìn)化計算,都屬于計算智能學(xué)科研究范疇。
統(tǒng)計學(xué)法
90年代,人工智能研究發(fā)展出復(fù)雜的數(shù)學(xué)工具來解決特定的分支問題。這些工具是真正的科學(xué)方法,即這些方法的結(jié)果是可測量的和可驗證的,同時也是人工智能成功的原因。共用的數(shù)學(xué)語言也允許已有學(xué)科的合作(如數(shù)學(xué),經(jīng)濟或運籌學(xué))。STUART J. RUSSELL和PETER NORVIG指出這些進(jìn)步不亞于“革命”和“NEATS的成功”。有人批評這些技術(shù)太專注于特定的問題,而沒有考慮長遠(yuǎn)的強人工智能目標(biāo)。
集成方法
智能AGENT范式智能AGENT是一個會感知環(huán)境并作出行動以達(dá)致目標(biāo)的系統(tǒng)。最簡單的智能AGENT是那些可以解決特定問題的程序。更復(fù)雜的AGENT包括人類和人類組織(如公司)。這些范式可以讓研究者研究單獨的問題和找出有用且可驗證的方案,而不需考慮單一的方法。一個解決特定問題的AGENT可以使用任何可行的方法-一些AGENT用符號方法和邏輯方法,一些則是子符號神經(jīng)網(wǎng)絡(luò)或其他新的方法。范式同時也給研究者提供一個與其他領(lǐng)域溝通的共同語言--如決策論和經(jīng)濟學(xué)(也使用ABSTRACT AGENTS的概念)。90年代智能AGENT范式被廣泛接受。AGENT體系結(jié)構(gòu)和認(rèn)知體系結(jié)構(gòu)研究者設(shè)計出一些系統(tǒng)來處理多ANGENT系統(tǒng)中智能AGENT之間的相互作用。一個系統(tǒng)中包含符號和子符號部分的系統(tǒng)稱為混合智能系統(tǒng) ,而對這種系統(tǒng)的研究則是人工智能系統(tǒng)集成。分級控制系統(tǒng)則給反應(yīng)級別的子符號AI 和最高級別的傳統(tǒng)符號AI提供橋梁,同時放寬了規(guī)劃和世界建模的時間。RODNEY BROOKS的SUBSUMPTION ARCHITECTURE就是一個早期的分級系統(tǒng)計劃。